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ABSTRACT: The prediction of snow accumulation remains a forecasting challenge. While the adoption of ensemble nu-
merical weather prediction has enabled the development of probabilistic guidance, the challenges associated with snow ac-
cumulation, particularly snow-to-liquid ratio (SLR), still remain when building snow-accumulation tools. In operations,
SLR is generally assumed to either fit a simple mathematical relationship or conform to a historic average. In this paper,
the impacts of the choice of SLR on ensemble snow forecasts are tested. Ensemble forecasts from the nine-member High-
Resolution Rapid Refresh Ensemble (HRRRE) were used to create 24-h snowfall forecasts for five snowfall events associ-
ated with winter cyclones. These snowfall forecasts were derived from model liquid precipitation forecasts using five SLR
relationships. These forecasts were evaluated against daily new snowfall observations from the Community Collaborative
Rain Hail and Snow network. The results of this analysis show that the forecast error associated with individual members
is similar to the error associated with choice of SLR. The SLR with the lowest forecast error showed regional agreement
across nearby observations. This suggests that, while there is no one SLR that works best everywhere, it may be possible to
improve ensemble snow forecasts if regions where SLRs perform best can be determined ahead of time. The implications
of these findings for future ensemble snowfall tools will be discussed.

SIGNIFICANCE STATEMENT: Snowfall prediction remains a challenge. Computer models are used to address the
inherent uncertainty in forecasts. This uncertainty includes aspects like the location and rate of snowfall. Meteorologists
run multiple similar computer models to understand the range of possible weather outcomes. One aspect of uncertainty
is the snow-to-liquid ratio, or the ratio of snow depth to the amount of liquid water it melts into. This study tests how
common predictions of snow-to-liquid ratio impact snowfall forecasts. The results show that snow-to-liquid ratio
choices are as impactful as the models’ differing snow rate or snow location forecasts, and that no particular snow-to-
liquid ratio is most accurate. These results underscore the importance of better snow-to-liquid ratio prediction to im-
prove snowfall forecasts.
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1. Introduction

Accumulating snow represents a significant threat to life
and property. Snow, by its nature, is typically a long-duration
threat, lasting for hours to days. Even with phenomena that
happen over short time scales (e.g., snow squalls), mitigation
efforts such as pretreating or plowing roads and runways take
a substantial amount of time. The effectiveness of these miti-
gation efforts depends on how quickly snow accumulates.
Thus, accurate snowfall accumulation forecasts are important
for stakeholders to operate with optimal effectiveness and
safety.

There are two critical components to a successful forecast
of snow accumulation. Both are problematic. The first is an
accurate prediction of the liquid-equivalent precipitation,
known as the quantitative precipitation forecast (QPF), im-
provement of which has long been a point of emphasis for the
cold season (Ralph et al. 2005). Ensemble NWP has been
shown to improve the performance of QPF for winter storms

(e.g., Greybush et al. 2017), though these ensembles have
known issues with biases and under-dispersiveness (Romine
et al. 2014).

The second component, and the topic of this research, is
the conversion from QPF to the actual snow accumulation.
The snow-to-liquid water ratio (SLR) depends on multiple
factors including QPF itself, crystal habit/size, and morpho-
logical changes to the snowpack after the snow has fallen,
such as temperature, wind, melting, compaction, and saltation
(see review in Roebber et al. 2003). These factors can all have
significant variation in both time and space. However, NWP
models are incapable of representing most of the factors that
contribute to SLR. Thus, the uncertainty in snow accumula-
tion forecasts can exceed the uncertainty due to QPF alone
(Roebber et al. 2003 and references therein).

SLR prediction methods vary in how much information
they require as inputs to determine SLR. The simplest is a
constant SLR democratically applied everywhere. An SLR of
10:1 was used for many years in operational forecasting, and
there are still some references to its use in media today [see
Roebber et al. (2003) for a review of the origins of the 10:1 re-
lationship]. This method fails to account for known temporal
and spatial variations in SLR as demonstrated in Baxter et al.
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(2005), and the limited use that the 10:1 method sees is likely
due to its mathematical simplicity rather than any inherent
skill in the method. The Baxter et al. (2005) climatological
assessment of SLR shows clear spatial trends across the
CONUS as well as monthly trends. The Baxter et al. (2005)
climatology has been updated and is currently used as the
SLR for first guess field of the national snowfall analysis pro-
duced by the National Operational Hydrological Remote
Sensing Center (NOHRSC 2022). This method is also simple,
as it relies on predesignated SLRs for each point in the
CONUS. While the climatological method allows for a pre-
scribed degree of spatial and temporal variability, it does not
account for rapid changes in SLR at a set location during a
single event. More sophisticated methods are required to ob-
tain this degree of SLR variability.

There are multiple techniques that allow for a dynamic
SLR (i.e., one that allows for variation at short temporal and
spatial scales). The so-called Kuchera method has become
commonplace in operational meteorology, including the
NWS, despite having not been formally published. This tech-
nique was created by performing a linear regression on snow
depth and liquid equivalent observations using the maximum
temperature in a column below 500 hPa, Tmax, as the sole pre-
dictor of SLR (E. Kuchera 2021, personal communication).
Such a methodology exploits the fact that the snow habit, and
consequently, SLR, are functionally dependent on the envi-
ronmental temperature (Roebber et al. 2003; Alcott and
Steenburgh 2010). While not as simple and intuitive as the
10:1 or climatological methods, the Kuchera method requires
only the temperature profile to run. A technique that ac-
counts for more forcings on the SLR is presented in Cobb and
Waldstreicher (2005; Cobb 2011, the “Cobb method”). This
method accounts for the temperature, vertical velocity, and
relative humidity within the cloud above each grid point. This
method implicitly considers ascent in the dendritic-growth
zone. If the column’s ascent is primarily between 2108 and
2208C, the algorithm produces larger SLR values for that
grid point. The Kuchera and Cobb methods are relatively sim-
ple, rules-based algorithms. Techniques that exploit machine
learning (Roebber et al. 2003; Ware et al. 2006) and efforts to
directly derive SLR from microphysical parameterization
schemes (Smirnova et al. 2016) have also been presented in
the literature.

This study uses snowfall observations to assess the relative
contribution of the choice of ensemble member, with the pri-
mary impact of member choice being the associated QPF, and
choice of SLR to the final snowfall forecast error. For this
study, we will be focusing on the error in forecasts of snowfall,
rather than SLR. This is being done for two reasons. First,
SLR is not measured directly, and is thus derived from two
measurements, snow depth and melted liquid depth. This
makes SLR more uncertain than just the snowfall measure-
ment alone. Also, the constituent observations can be biased
toward numbers that yield “nice” SLRs, especially where the
measurements would yield a value of 10:1 (Baxter et al. 2005).
Second, we are approaching this problem from the perspec-
tive of improving the ultimate snowfall forecast, and its role
in developing decision support tools. Snowfall and/or snow

rate are the important parameter for decision support; this
work is aimed at understanding a potential source of uncer-
tainty in those fields in SLR choice.

The next section will describe the data sources and method-
ology used herein. The overall results of the analysis are pre-
sented in section 3. Detailed analysis from two cases within
the dataset will be presented in section 4. Finally, the implica-
tions of the findings of this study are discussed in section 5.

2. Data and methodology

a. Ensemble NWP

The ensemble NWP data used in this study is from the
High-Resolution Rapid Refresh Ensemble (HRRRE; Kalina
et al. 2021), which is an experimental ensemble consisting of
perturbed versions of the operational High Resolution Rapid
Refresh model. This ensemble has nine members run out to
36 hours, with hourly output. The HRRRE was chosen for
this study due to its relatively small horizontal grid spacing of
3 km and hourly output, both of which are necessary to repre-
sent phenomena with short time scales and small geographic
footprints (e.g., lake effect snow or snow squalls), as well as
the hourly output enabling SLR updates every hour where
changes in the model fields cause the SLR calculation to
change. The HRRRE uses a stochastic parameter perturba-
tion to create ensemble spread in a method that is still
consistent with atmospheric physics beyond the traditional
perturbations to initial and boundary conditions.

For each member of the HRRRE, an hourly snowfall field
is computed from the hourly QPF using the four SLRs dis-
cussed in detail in section 1 (i.e., 10:1, climatology, Kuchera,
and Cobb). Snow is assumed to occur in any grid box in a par-
ticular member if that member has a nonzero snow accumula-
tion in the grid box. If no snow accumulation is produced,
snow accumulation at that grid point is zero, even if other
members produced snow there. Assuming precipitation falls
as all snow where any snow falls in the model results in an
overestimate in transition zones, as some of the precipitation
actually falls as other precipitation types in reality, which
could include particles like graupel in otherwise all-snow envi-
ronments. However, this methodology is chosen over using
the fraction of mass in a grid point that fell as snow in order
to minimize the impact of the HRRRE microphysics scheme
on the results of this study. Reeves (2016) demonstrated that
these mixed or transition precipitation type observations rep-
resent 2%–4% of precipitation observations in near-08C envi-
ronments. Of these 2%–4%, roughly half are freezing drizzle
or freezing rain, with no snow. Thus, the impact of these tran-
sition zones on the final results should be limited.

b. Snow-to-liquid algorithms

The snow algorithms are chosen to represent SLRs that Na-
tional Weather Service forecasters are trained to use (WDTD
2022). The four algorithms used in this study are the 10:1
relationship, the climatological SLR, the Kuchera method,
and the Cobb method (Cobb 2011). These four algorithms
represent a spectrum of data requirements to run, from no
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environmental data to both thermodynamic and kinematic
profiles as discussed in section 1 and summarized below.

1) 10:1: This SLR relationship assumes 10 in. of snowfall for
every 1 in. of liquid-equivalent precipitation.

2) Climatological SLR: This relationship is used for the
NOHRSC analysis and is based on the climatology pre-
sented in Baxter et al. (2005). The NOHRSC climatology
uses a singular value for an individual month, representing
the median, as opposed to the Baxter et al. (2005) climatol-
ogy, which includes multiple SLRs for various percentiles.
Values with this SLR generally ranged from 6–7:1 across the
southern United States to 20–21:1 in the northern Rocky
Mountains during the months used in this study. The
NOHRSC dataset is used here both in deference to its oper-
ational use and to remove the requirement to choose a per-
centile from the climatology to use in the forecast. Each
event in this study uses the SLR from the month during
which the event occurred.

3) The Kuchera method: This method calculates the SLR us-
ing the following relationship:

SLR 5
12 1 2 3 (271:16 2 Tmax) for Tmax . 271:16 K

12 1 (271:16 2 Tmax) for Tmax # 271:16 K
:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4) The Cobb method: This method requires the most input

data to run of the methods considered here. It considers
the vertical profiles of temperature, vertical velocity, and
relative humidity with respect to ice at each grid point.
First, the column maximum vertical velocity (wmax) within
a cloud is determined. A cloud is defined as any altitude
where RHi $ 90%. Then, each vertical level in the cloud
is assigned an SLR to contribute to the column’s SLR
based on the temperature of the layer. For this work, the
updated temperature/SLR relationships specified in Cobb
(2011) were used. The temperature/SLR relationship is
zero when above freezing, 3:1 at 08C, increases to 26:1 for
a layer average temperature of 2168C, and then decreases
to 7.2:1 below 2308C. A weighting factor for this layer,
WF, is then calculated:

WF_layer 5 w
w

wmax

( )2
F2 2 F1,

where w is the layer vertical velocity, and F2 and F1 are
the altitudes at layer top and layer bottom, respectively.
Finally, the SLR value for that grid point is calculated by
summing over each layer’s SLR weighted value:

SLR 5∑
WF_layer 3 SLRlayer

WF_total
:

5) HRRR method: The HRRR postprocessed data files in-
clude a snowfall field, previously mentioned for the mask-
ing performed in this study. This field is calculated using
the same framework used here, by multiplying the liquid
equivalent precipitation by the method’s SLR. The

HRRR uses an SLR relationship based solely on the low-
est model level temperature (Benjamin et al. 2021). This
method varies SLR from less than 5:1 at 08C to 17:1 at
2158C and below. Most of the analysis in this paper will
focus on the other SLRs, as the HRRR SLR method is
not used widely outside the production of the HRRR
model output to the authors’ best knowledge.

c. Observational data

Model snowfall forecasts are verified using observations from
the Community Collaborative Rain Hail and Snow (CoCoRAHS;
Cifelli et al. 2005) network. CoCoRAHS observers receive train-
ing and materials to support their data collection efforts. Observ-
ers report precipitation daily at 0700 local time (LT), including
the 24-h-accumulated new snow depth, which will be used in this
study. While CoCoRAHS observers report at 0700 LT, they
are trained to take their snow observations as near as possible
to the cessation of snowfall, though the snow board used for
measurement is not cleared until the reporting time every day
(CoCoRAHS 2014a). This should act to minimize losses
to melting and compaction in the reported accumulation.
CoCoRAHS also undergoes automated and manual quality
control (CoCoRAHS 2014b). Additionally, as with most vol-
unteer networks, the location and number of observation sites
are weighted by population density, meaning that more
densely populated locations will be overrepresented in the da-
taset. To limit the impact of imprecise measurements of small
snow depths, only observations with at least 50.8 mm (2 in.) of
new snow are considered in this study following Baxter et al.
(2005) and Roebber et al. (2003).

d. Snow cases

For this study, five 24-h periods during snow events from
the 2020/21 winter season are analyzed (Table 1). These
events are geographically large snowfall events associated
with midlatitude cyclones to maximize the variety of snow-to-
liquid ratios in the dataset. One pair of days, 31 January/
1 February are snow events from the same cyclone. For 1 February,
the only available HRRRE run where data were available for
the whole 24-h study period was initialized at 0600 UTC in-
stead of 1200 UTC, so snow accumulating between forecast
hours 6 and 30 is used for this case. For all other cases, snow
accumulating between forecast hours 0 and 24 are used. The
model data and CoCoRAHS snowfall reports are only proc-
essed in a limited area for each individual event to limit the
analysis to the cyclone of interest. The defining corners of
each subdomain’s rectangle are provided in Table 1. Table 1
also shows the number of CoCoRAHS observations that fall
within the analysis domain for each case.

3. Results—Overall

A statistical summary of the performance of the SLR
algorithms across all events is presented in Fig. 1. Here, the
algorithms’ performance for each event have been combined
into an event total, with each CoCoRAHS observation
represented nine times for each event, one verification per
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ensemble member. In performing this verification, snowfall
errors are considered in an absolute sense; a positive and neg-
ative departure are identical in these statistics. The absolute
error for each station/member/SLR combination is compared
to the errors for the other SLRs for that station/member com-
bination. The SLR that produces the smallest absolute error
is considered to be the best algorithm for that station/member
combination; the largest absolute error causes the SLR to be
considered the worst.

Across the events, there is no clear “best” or “worst” SLR
algorithm. The HRRR algorithm is the one with the smallest
error for the largest fraction of sites in four of the five events
(Fig. 1a). In three of these events, more than one-third of the
sites are best predicted using this algorithm. But even the

algorithm that has the fewest fraction of best forecasts, 10:1,
still manages to produce the best forecast for at least 19% of
the sites’ observations for three of the cases. The climatologi-
cal SLR provides the best forecast at less than 15% of the
sites in four of the five cases. It only produces the most best
forecasts for one event, 15 February, with the best forecast at
53.6% of the sites. The Cobb algorithm never has the highest
proportion of best forecasts, and has the lowest individual
event performance of any algorithm, with only 5.6% of the
best-forecast locations on 15 February.

The 10:1 and climatological SLRs have the most sites with
the worst snowfall forecast, accounting for more than 40% of
the worst-forecast sites when combined for all but one of the
events (Fig. 1b). On 13 March, climatology has the worst

a)

b)

FIG. 1. Percentage of CoCoRAHS observations for each snow event where each SLR relation-
ship (color) is the (a) best and (b) worst performing. Percentages may not add up to exactly
100% due to rounding.

TABLE 1. Snow cases used in this study. The number of observations refers to those observations that meet the 5.08-cm snowfall
minimum that are also within the study region.

Case
Model initialization

time
Region (SW lon, NE lon,

SW lat, NE lat)
No. of CoCoRAHS

observations

Start: 1200 UTC 31 Jan 2021 1200 UTC 31 Jan 2021 2968, 2688, 328, 458 788
End: 1200 UTC 1 Feb 2021
Start: 1200 UTC 1 Feb 2021 0600 UTC 1 Feb 2021 2968, 2688, 328, 458 1054
End: 1200 UTC 2 Feb 2021
Start: 1200 UTC 15 Feb 2021 1200 UTC 15 Feb 2021 21008, 2688, 298, 508 1297
End: 1200 UTC 16 Feb 2021
Start: 1200 UTC 17 Feb 2021 1200 UTC 17 Feb 2021 21008, 2688, 278, 458 365
End: 1200 UTC 18 Feb 2021
Start: 1200 UTC 13 Mar 2021 1200 UTC 13 Mar 2021 21168, 2958, 308, 458 692
End: 1200 UTC 14 Mar 2021
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forecast at 73.0% of the sites. On 1 February, the algorithm
with the most sites having the highest error is the Cobb algo-
rithm at 24.1%, but all algorithms are the worst at least 15%
of the sites in this event. Performance can vary widely within
the same event; on 31 January, despite being the best algo-
rithm at 34.5% of the sites, the HRRR algorithm is also the
worst at 28.5% of the sites. Interestingly, the Cobb algorithm
is neither commonly the best algorithm, nor is it commonly
the worst algorithm, never going over 25% in either the best
or worst categories.

This analysis was also performed without the HRRR algo-
rithm included, since that algorithm sees little use outside of
the HRRR model itself. The results (not shown) were very
similar to the five algorithms: there was no dominant SLR
that clearly produces the lowest error across events. The ma-
jor difference is that the Kuchera SLR was now typically the
SLR with the most forecasts with the lowest error, replacing
the HRRR. This is likely because of the two algorithms’ sub-
stantial similarity as max temperature algorithms. In addition,
the analysis was also repeated with a 15.24 cm (6 in.) mini-
mum snowfall threshold. The heavier snowfall dataset still
had the same general distribution, where there was not a clear
best SLR (not shown).

To assess the sensitivity of these results to population bias,
all CoCoRAHS observations are placed into bins on the
HRRR grid based upon what HRRR grid point the observa-
tion was taken within. For HRRR grid points with multiple
snowfall observations, subsequent observations are only
retained if they differ by at least 5.00 cm from all other obser-
vations associated with that grid point. To simplify the analy-
sis, this experiment was performed on the non-HRRR SLRs.
This has the effect of removing observations that agree with
others, while retaining those that are substantially different

and may yield a different best or worst SLR. This method
implicitly assumes that the substantially different subgrid
measurements are correct and the difference is due to sub-
grid variability. Some of these measurements may be erro-
neous outliers, so this methodology increases their impact
on the results. Removing the similar observations within
the same grid point from each case reduces the number of
snow-depth observations in each case by an average of
7.7% (in the four-SLR dataset). These removals do not ap-
preciably change the results in Fig. 1, with a median differ-
ence of 0.3%, and a maximum difference of 3.9%. As
the difference is small, the rest of this paper will use the full
CoCoRAHS dataset.

The final experiment performed was to test the sensitivity
of the results to QPF error. In this test, pairs of observations
and member forecasts for that station are only kept if the dif-
ference between the observed liquid precipitation and the
member’s QPF is 10% or less. This test is meant to be restric-
tive, and test the SLRs only if the underlying QPF is close to
correct. The results of this experiment are presented in Fig. 2.
With these restrictive criteria, less than 20% of the original
observation/member pairs are included in the analysis for ev-
ery event. As with the other tests, the overall performance of
the SLRs is similar to Fig. 1. There are some significant
changes, such as the 10:1 SLR with a percentage difference of
almost 30% higher on 17 February, or the HRRR having a
20% percentage difference on 15 February, though that case
only has 3.2% of its 1297 observations meeting the QPF
criteria. Despite those changes, only one case (15 February)
has an SLR above 50% (climatology); only one other case,
1 February, has an SLR above 30%. Even if a certain SLR
would become clearly the highest performing algorithm in
this dataset, there is no practical way to know ahead of time

Obs with QPF within 10%:

13.5%

9.8%

3.2%

11.8%

17.4%

a)

b)

FIG. 2. As in Fig. 1, but for snow observations where the HRRRE QPF is within 10% of the
observed CoCoRAHS liquid precipitation. Percentage of CoCoRAHS dataset meeting this ad-
ditional criterion is indicated at the right side of (a).
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what locations in the model forecast will turn out to accu-
rately predict QPF.

As with the algorithms with the lowest error, there are sev-
eral cases for which the QPF restriction substantially changes
the worst forecasts in Fig. 2b, with the HRRR algorithm on
15 February and the 10:1 relationship on 17 February had a
percentage difference that was more than 20% higher than in
Fig. 1b. This makes three cases where over 50% of the worst
forecasts were a single SLR, but those SLRs were all different
(HRRR, 10:1, and climatology).

4. Results—Case studies

An algorithm being best or worst based on the percentage
of observations at which the algorithm performed best does
not on its own tell the whole story. A closer look at the results
from individual events is necessary to more fully understand
how the choice of SLR impacts the ultimate forecast. Two of
the five events in the analysis are examined in more detail be-
low. This analysis will start with the four non-HRRR SLRs, as
those are more widely available in output.

a. 1 February 2021

This event was the second day of a large, cyclone-driven
precipitation event across the eastern United States. On
1 February, a new low pressure center developed off the New
Jersey coast and slowly deepened (not shown). This slow-
moving low produced copious amounts of snow over the
northeastern United States (Fig. 3). A large swath of 24-h ac-
cumulations over 30 cm is present from south-central Pennsyl-
vania through far southern Maine, with maximum snowfalls
over 61 cm (2 ft) in northern New Jersey.

Before discussing snowfall errors, it is important to consider
the role of liquid melted depth in the snowfall errors in the
case study. Figure 4a contains a plot of the 24-h liquid precipi-
tation observed by CoCoRAHS observers for this event. Be-
cause some volunteers may submit partial observations, not
all stations with snowfall observations are represented here
due to missing total precipitation. The HRRRE quantitative
precipitation forecast covering the same timeframe for the
1 February event is presented in Fig. 4b. There is a consistent
high bias to the HRRRE QPFs when compared with
CoCoRAHS observations, with a mean difference of 5.3 mm
more QPF in the HRRRE compared to the observed precipi-
tation across all CoCoRAHS sites. There are regions where
this bias is larger, such as eastern Massachusetts, and other re-
gions where there was more precipitation observed than pre-
dicted by the HRRRE ensemble mean, such as northern and
central New Jersey. It is worth noting that some of the differ-
ence between forecast and observations can be due to obser-
vation error, as measuring solid precipitation comes with
additional uncertainty due to challenges such as gauge under-
catch (e.g., Rasmussen et al. 2012).

Next, the spatial distribution of the SLR method with the
lowest snowfall error is examined. Figure 5a shows how the
best SLR varied across the CoCoRAHS observations based
on HRRRE member 5, chosen for illustrative purposes. The
best SLR for a given observation site tended to agree with
other nearby snow observations’ SLRs, with several large re-
gions of agreement for the SLRs. The 10:1 SLR produced the

0 7.5 15.0 22.5 30.0 37.5 52.5 60.0 67.545.0
New Snowfall (cm)

FIG. 3. CoCoRAHS 24-h new snow accumulations observed on
2 Feb 2021.

0 10 20 30 40 50 60 70 80
Precipitation (mm)

CoCoRAHS Liquid Precipitation Mean HRRRE QPF at CoCoRAHS Sites

a) b)

FIG. 4. (a) Observed liquid precipitation at CoCoRAHS stations used in this study for the 1 Feb
case. (b) Ensemble mean QPF for each of the CoCoRAHS stations in (a).
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best forecasts in this member across northern New York,
Vermont, New Hampshire, and southern Maine. The Kuchera
ratio performed well in this member across eastern Pennsyl-
vania and eastern Maine, as well as Ohio. The climatological
ratio did well across south-central Pennsylvania, as well as
southwestern Pennsylvania into West Virginia. The Cobb ra-
tio was best from central Connecticut into central Massachu-
setts. In short, the best SLR varied regionally.

To illustrate the member-to-member variability, the same
plot for another member, member 2, is displayed in Fig. 5b. In
several regions, the best SLR method changes consistently be-
tween members; that is, where nearby observations share an

SLR in Fig. 5a, the entire region consistently changes to an-
other SLR in Fig. 5b. For instance, the region from southern
Vermont and western Massachusetts changed from mostly
having 10:1 as the best algorithm in Fig. 5a to the Kuchera be-
ing the best algorithm in Fig. 5b. Additionally, north-central
New Jersey changed between members from either 10:1 or
Kuchera in Fig. 5a to mostly Climatology in Fig. 5b as the best
SLR, while southeast Pennsylvania and southern New Jersey
changed to the Cobb algorithm as the best in Fig. 5b. For
both members presented, the maximum swath in snowfall
from Fig. 3 generally has the Kuchera algorithm as the best
forecast for many sites.

In addition to declaring a best or worst forecast from the
SLR algorithms, it is important to examine how absolute
snowfall error varies across the algorithms. Figure 6 presents
the error distribution from two perspectives: the absolute
error (|forecast 2 observation|) and bias error (forecast 2

observation; Wilks 2019). These results are shown in Fig. 6a,
where all forecast absolute errors from all CoCoRAHS obser-
vations and all members are binned by SLR. The distribution
of errors by SLR method is very similar across all four SLRs,
with the 10:1 having the lowest median error at 7.4 cm, both
the Kuchera and Cobb algorithms having median errors of
7.8 cm, and the climatology method having a median error of
8.3 cm.

To test the statistical veracity of the median differences,
bootstrap resampling analysis was performed. (Hamill 1999)
Each median was calculated with 9999 resamples to calculate
95th percentile confidence intervals. For the four SLRs inves-
tigated, the 95th confidence intervals draw similar conclusions
as the medians themselves, with the 10:1 SLR ([7.16, 7.54] cm)
having the lowest range, the Kuchera SLR ([7.602, 8.006] cm)
and the Cobb SLR ([7.561, 7.969] cm) having mostly overlapping
confidence ranges, and the climatology SLR ([7.994, 8.493] cm)
having the highest median absolute error.

FIG. 5. (a) CoCoRAHS observations colored by the SLR that
produced the lowest snowfall error for HRRRE member 5 on
1 Feb 2021. Terrain elevation shaded in grayscale. (b) As in (a),
but for HRRREmember 2.
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FIG. 6. Snow accumulation absolute forecast errors for all observations on 1 Feb 2021, sorted by (a) SLR method
and (b) ensemble member. Whiskers represent 1.5 3 the interquartile range. (c),(d) As in (a) and (b), but the errors
are the bias errors.

R O S ENOW ET A L . 2141OCTOBER 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 11/02/23 07:20 PM UTC



In Fig. 6b, all forecasts and all SLRs are binned by the indi-
vidual ensemble member. Median absolute snowfall errors
across members varied from member 2 at the low end with
6.3 cm to member 4 at the high end with a median error of
10.6 cm. The best case in terms of member, member 2, had a
lower median error than the 10:1 ratio, the SLR with the low-
est median error, and the worst member has a higher median
error than the SLR with the highest median error, the clima-
tology SLR. Thus, the choice of member here was slightly
more impactful than the choice of SLR.

Bootstrapping analysis was performed for the per-member
diagnostics as well. One benefit of this analysis on the individ-
ual members is that it reduces issues associated with the sam-
pling disparity between having nine members per SLR in
Fig. 6a and four SLRs per member in Fig. 6b. As with the per-
SLR medians, the 95th percentile confidence intervals for the
individual members range from member 2’s ([6.002, 6.478] cm)
to member 4’s ([10.154, 10.998] cm). In this case, any SLR
choice gives you a higher median error across the ensemble
than specifically choosing member 2, and a lower median error
than choosing member 4.

When examining the bias error distribution in Fig. 6c, all
SLRs have a near-zero median. This indicates that for this
case, the individual algorithms have minimal bias, with the cli-
matology and Kuchera having a slightly positive median error,
and the 10:1 and Cobb having a slightly negative median error.
The 10:1 median bias error being negative is consistent with the
median SLR being higher than 10:1 (e.g., Roebber et al. 2003).
Similarly, in the member-by-member plots in Fig. 6d, the indi-
vidual members have small positive or negative biases in the
median error of similar magnitude to those of the individual
SLR ratios. For this case, the choice of SLR does not signifi-
cantly cause bias in the median snowfall forecast.

In addition, comparing the median errors to the percen-
tages where the SLRs are the best forecast in Fig. 1 yields in-
teresting results. In Fig. 1a, the Kuchera algorithm had the
most best forecasts by quantity, yielding the lowest error
42.1% of the time. However, its median error is in the middle
of the SLRs in Fig. 7a, and the 10:1 ratio, while being best for
29.2% of forecasts, has the lowest median error. The Cobb

algorithm had the same median error as the Kuchera SLR,
but was only the algorithm with the lowest error 13.8% of the
time, the smallest fraction of all algorithms for this case.
These results indicate that determining a best method is not a
straightforward endeavor. Rather, the definition of best is de-
pendent on what aspect of the distribution the statistical anal-
ysis is optimized toward (lowest median error, largest number
of sites with the lowest error, etc.). This is analogous to the
multiple ways a forecast can more generally be considered
best (Murphy 1993), where the use of the resultant forecast
drives the way in which it scored.

b. 13 March 2021

The 13 March event was the result of sustained lee cyclo-
genesis in eastern Colorado, which created a long-duration
precipitation event. Temperatures are initially above freezing
for the most part in the plains east of the mountains, and
these locations undergo a rain-to-snow transition as the event
goes on (not shown). Figure 7 shows the CoCoRAHS snow-
fall report for this event, with the largest accumulations
(.30.0 cm) reported from southeastern Wyoming to central
Colorado, with a tight gradient between these heavier snows
and lesser amounts across nearby plains.

A map of the SLR with the best snowfall forecast for each
CoCoRAHS observation in this event from HRRRE member
5 forecast is shown in Fig. 8 as an example. As with the
1 February case, SLR methods tend to be the best in clus-
ters. Here, the Kuchera algorithm is the best for most of
the observations across the eastern plains of Colorado and
Wyoming. For the high density of observations in and around
the urban corridor east of the Front Range mountains in north-
ern Colorado, the Cobb algorithm was commonly the SLR with
the lowest absolute error, alongside the Kuchera algorithm.
The 10:1 relationship performed best near and to the west of the
leading mountains in northern Colorado, including many obser-
vations in the highest snowfall regions in Fig. 7. The sites where
the climatological SLR performs best are generally limited to
sites in the mountains, particularly southwestern Colorado. The
member-to-member variability of best forecast by the various

0 7.5 15.0 22.5 30.0 37.5 52.5 60.0 67.545.0
New Snowfall (cm)

FIG. 7. As in Fig. 3, but for new snowfall observed on 14 Mar 2021.

FIG. 8. As in Fig. 5, but for HRRRE member 5 for 13 Mar 2021.

WEATHER AND FORECAS T ING VOLUME 382142

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 11/02/23 07:20 PM UTC



SLRs has a similar consistency as the previous case. In some
areas, the SLR method producing the best snowfall forecast
are clustered. In others, there are variations, even among
nearby CoCoRAHS sites. Where some nearby observations}
here, mainly those in the eastern plains}consistently have the
same best SLR, but others change between members, often
changing simultaneously with nearby observations (not shown).

The distribution of snowfall forecast errors for the 13 March
event is shown in Fig. 9. When separated by SLR (Fig. 9a), three
SLR methods have similar interquartile ranges: the 10:1,
Kuchera, and Cobb SLRs. The latter two have slightly lower
errors, with the Kuchera SLR having a median error of 6.7 cm,
and the Cobb SLR having a median error of 6.3 cm. The
10:1 ratio has a median error of 8.2 cm, about 25% larger
than the NWP-derived SLRs. The remaining SLR, climatology,
does poorly on this event, with a median error of 19.8 cm. This
large error for the climatology SLR suggests that this storm is
atypical when compared to historic events in the region in
March. The better performance of the 10:1 ratio, which is lower
than the climatological SLR this time of year in these regions,
and the Kuchera algorithm, which would produce smaller SLRs
with the near-freezing profiles in the eastern plains, suggest that
the climatology SLR is too high for this event. Denver, Colo-
rado, actually sees its highest monthly snowfall in March
(NWS 2022). As snowfall is common this time of year, Colo-
rado’s March SLR climatology is more robust than other
parts of the CONUS, for which March snow may be uncom-
mon. This highlights the importance of understanding the
SLR algorithm(s) being applied to a forecast. In the case of
the 13 March storm, for instance, an experienced forecaster
evaluating NWP forecasts could notice that the storm is not
consistent with typical March snow events in Colorado, and
disregard any snow accumulation forecasts using the climato-
logical SLR.

Similar to the previous case, the errors in individual ensem-
ble members are similar to the error distribution across the
SLR methodologies. The exception is the climatological SLR,

due to its consistently worse performance than other SLRs.
The upper bound of the interquartile ranges for the individual
members are higher than those of the three more accurate
SLRs, with many above 15 cm, but this is influenced by the
high errors associated with the climatological SLR (Fig. 9).
Using only the three other SLRs (10:1, Kuchera, Cobb) yields
lower errors on a member-by-member basis (not shown).
With the exception of this case, the rest of the cases in this
study were similar to the 1 February case in that there is not
an SLR that is consistently worse for almost all observations.
A potential follow-on to this study would be to gather a much
larger ensemble NWP dataset and determine the types of
events for which the individual SLRs may be disregarded in a
forecast.

The larger absolute error of the climatological SLR is like-
wise represented in the median bias error, with a median
error of nearly 20.0 cm in Fig. 9c. This imparts a strong posi-
tive bias across the climatology snowfall forecasts. The 10:1
has a smaller, but still substantial positive median error near
5.0 cm. The Kuchera algorithm has a near-zero median error
in Fig. 9c, and the Cobb algorithm has a small positive median
error. The combination of the climatology SLR and the 10:1
SLR errors strongly influence the individual member errors in
Fig. 9d, where all nine HRRRE members have a positive bias
to their median snowfall forecast.

Performing bootstrapping on the calculation of the median
shows the Cobb SLR ([61.25, 64.51] cm) has the lowest 95%
confidence interval for the median, though there is slight over-
lap with the Kuchera SLR ([64.81, 68.79] cm) confidence in-
terval. The 10:1 SLR ([79.65, 84.44] cm) has a higher median
range, and the climatology SLR ([193.02, 202.29] cm) lower
bound is more than double the upper bound of the third-place
SLR’s confidence interval. The median absolute error across
the ensemble is lower for both the Kuchera and Cobb algo-
rithms than the best-performing member, member 5 ([67.30,
73.87] cm). The worst-performing member, member 6
([110.72, 127.00] cm) performed substantially worse than the
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FIG. 9. As in Fig. 6, but for 13 Mar 2021.

R O S ENOW ET A L . 2143OCTOBER 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 11/02/23 07:20 PM UTC



10:1 SLR. Here, the choice of SLR is more important than
choice of member, as using the ensemble of SLRs is worse
than two SLRs for all members, and worse than three SLRs
for some members.

To illustrate the sensitivity of the geographic dependency
on the number of SLRs included, the analysis in Fig. 8 was re-
run, including the HRRR SLR with the other four SLRs. The
results including the HRRR are presented in Fig. 10. Consis-
tent with the similarities between the algorithms, a substantial
number of the best forecast changes from Fig. 8 to the HRRR
are from the Kuchera algorithm, particularly near the Front
Range in northern Colorado. However, not all locations that
were best-forecast by the Kuchera SLR are supplanted by the
HRRR forecast. Locations across northeast Colorado in par-
ticular still have the smallest error when the Kuchera algo-
rithm is used with this member, even when the HRRR
snowfall is added in. While a few other stations switch to the

HRRR, most other regions remain with the same best algo-
rithm as in Fig. 8. Consistent with the overall statistics in Fig. 1,
the addition of the HRRR does not make any method an obvi-
ous best algorithm, regardless of member chosen.

There are five different forecasts per member, per location.
To this point, it has been demonstrated that changing SLR re-
lationships with the same underlying NWP forecasts yields no
strong signal as to the most performant choice of SLR
method. It is also instructive to consider the practical impacts
of the choice of SLR. (The hourly progression of snow rate
during the 13 March case for Cheyenne, Wyoming, is shown
in Fig. 12.) Each of the SLRs’ ensemble mean snow rate is
shown in Fig. 11. These ensemble means vary by more than
that 2.54 cm h21, due to climatology’s poor performance for
this event. Even ignoring the climatology SLR as an outlier,
the mean snow rates differed by over 1.0 cm h21, with the dif-
ference maximizing at forecast hour 17.

The differences between SLRs is significant enough to
change decision-making substantially. Included on Fig. 11 is a
line at 2.54 cm h21, representing a hypothetical decision point
for a stakeholder. This is done for illustrative purposes to
show the impact of SLRs on exceedance of a threshold; the
general interpretation of this figure would be similar with
other snow-rate decision points. These decision points would,
for example, be part of a decision support tool requested by a
partner. Blindly trusting the climatological SLR, for instance,
would only drop below the decision point from hours 14 to
16; all other mean snowfall rates drop below the decision
point from hours 13 to 17. The more complex SLRs vary with
time (Kuchera, Cobb, HRRR), and these variations too can
impact decision-making. The Kuchera SLR snow rate, for in-
stance, is in the middle of these three SLRs through hour 10,
but the snow rate jumps up to higher than the 10:1 SLR snow
rate at hour 12. This makes the Kuchera algorithm the only
algorithm above the decision point at hour 22, besides

FIG. 10. As in Fig. 8, but including HRRR snowfall forecasts.

c

Model Ensemble Hourly Snow by Snow-to-Liquid Ratio at KCYS

.

.

.

.

FIG. 11. Hourly snowfall rate across the HRRRE ensemble and all SLRs for Cheyenne, WY,
for the 13 Mar case. Colored lines represent ensemble mean snowfall rates for each snowfall
forecast. Black lines represent the extrema (minimum and maximum) at each time; these fore-
casts may come from different members and SLRs at different hours.
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climatology. If one considers the ensemble maximum and
minimum snow rates, a wide spectrum of solutions are possi-
ble. In the worst case, the ensemble exceeds the decision point
at hour 7 and never goes below for the rest of the period. In
the best case, the ensemble never reaches above 2.54 cm h21.
These results suggest that a probabilistic approach to SLR
might be required to capture the true range of solutions.

To illustrate the distribution of the underlying SLRs for the
snow rates in Fig. 11, the spatial variability of SLRs (other
than the constant 10:1) near Cheyenne, Wyoming (KCYS),
from one ensemble member is shown in Fig. 12. These SLR
analyses are valid at forecast hour 12 in Fig. 11, a time with
substantial spread between the mean climatological SLR
snow rate and the other methods. The climatology SLR does
not vary much spatially, with the highest value of 14.9:1 at

KCYS, consistent with the largest snow rate at forecast hour
12 in Fig. 11. The Kuchera SLR has higher values across the
colder high terrain to the west, and lower values over the
plains to the east, with a value of 10.2:1 at KCYS. The Cobb
SLR method produces the most variable field, owing to its re-
liance on the model’s vertical velocity. The Cobb SLR has a
value of 9.7:1 at KCYS. The Cobb method’s spatial variability
shows up in Fig. 11 in the Cobb method’s temporal variability
(Cobb 2011).

These plots also show potential limits of the methods. For
instance, in Fig. 12b), the Kuchera method produces no out-
put southeast of KCYS, as max column temperatures are too
warm. West of KCYS, there is a hole in the Cobb analysis
near the Medicine Bow Mountains, where orographic descent
would be expected on the downwind of the mountains. As
SLR itself is not a field that is typically plotted, these limita-
tions are only potentially detectible in downstream fields
(e.g., snowfall).

5. Discussion and conclusions

Here, the results of calculating the ensemble error statistics
for 24-h snowfalls across five events are presented. The over-
arching result of this work is that snowfall depth errors due to
the choice of SLR are of similar magnitude to the snowfall er-
rors due to the choice of ensemble member. This is despite
the SLRs in this study ranging from simplistic (everywhere is
10:1) to complex (SLR depends on temperature, relative hu-
midity, and vertical velocity in a column). This implies that
for the purposes of producing snowfall forecasts, there is not
a clear choice of the best SLR to produce the most accurate
forecast. This remains true when model-calculated snowfall
from the HRRR is included as an option; the HRRR’s perfor-
mance was within the envelope of performance of the SLR
methods in this study. Additionally, constraining the analysis
to observations with low QPF errors did not appreciably
change the results and did not yield a best SLR despite the ac-
curate liquid precipitation input. The small portion of obser-
vations that met the restrictive criteria for QPF from this
study, less than 20%, illustrates the inherent challenge of
snow forecasting, as the errors in the forecast and observa-
tions of liquid equivalent precipitation tend to be relatively
large compared to the actual quantity.

Upon closer examination of the SLR errors in this study,
there appear to be potential ways to overcome the inability to
improve snowfall forecasts by selecting a single SLR. When
the best SLR for individual observations are examined, there
is often a regionality to them; that is, where a given SLR is
best for one observation, there are often several nearby obser-
vations that have the same SLR as giving the lowest error.
Thus, if there is a way to determine where an SLR is going to
perform better than the others, errors could be lowered, re-
gardless of the underlying reasons for this regionality (actual
variation in SLR, NWP errors, variations in atmospheric pa-
rameters that feed SLR algorithms, etc.). One avenue of fu-
ture work would be to determine the meteorological
conditions under which these SLR relationships (and others)
have higher and lower errors. This would follow the

a) Climo
00 UTC 14 March

b) Kuchera

c) Cobb

4:1 8:1 12:1 16:1 20:1 24:1
Snow-to-Liquid Ratio

FIG. 12. Derived SLR for HRRRE member 6 at 0000 UTC
14 Mar 2021 for (a) climatology SLR, (b) Kuchera SLR, and (c) Cobb
cSLR. The location of Cheyenne, WY (KCYS), is indicated by the
dot.
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conclusions of Ware et al. (2006), which suggested that meteo-
rological conditions, principally thermodynamic profiles, can
constrain SLRs to improve forecasts.

For example, in the 13 March case presented here, the
Kuchera SLR was consistently the best performing in eastern
Colorado, a region where temperatures were marginal for
snow. As the only algorithm that can respond to marginal
near-surface temperatures due to its use of maximum-column
temperature, it could be expected that the Kuchera algorithm
would do well for that region when forecasting. Even where it
is clear a certain SLR will perform better in one region, other
SLRs will typically outperform that algorithm in other re-
gions. Thus, a “best” SLR field would likely have to consist of
multiple SLR methods, at least for the cases in this study.
One possibility for handling this would be to handle SLR in a
probabilistic framework, where SLR is treated as another axis
of uncertainty in the ultimate snowfall forecast. An in-depth
look at the underlying physical mechanisms for the SLR algo-
rithm’s regionality may be useful to these efforts.

What constitutes the best SLR also depends on how the
best algorithm is defined. Sometimes, a given SLR would
have the smallest error across the most stations by number,
but a different SLR would have a lower median error. This il-
lustrates that finding regions where individual SLRs perform
poorly would likewise be important to producing a best guess
SLR, as this would help eliminate big misses that bring down
an otherwise performant SLR. Discussions with stakeholders
will be necessary to determine what type of “goodness” they
prefer to maximize in their forecasts (Murphy 1993).

Another potential method to improve SLRs used to fore-
cast snowfall is to eliminate from consideration any that are
known to be inapplicable to a given event. For instance, the
13 March case was not a storm consistent with the climatologi-
cal SLRs for that time of year, so being able to exclude the cli-
matological SLR from use improves the forecast. This would
be true for any algorithm; as another example, the 10:1 rela-
tionship would be a poor choice for lake-effect snow, where
SLRs are typically higher (Baxter et al. 2005).

These potential improvements to SLR could lead to improved
decision support. Variation in SLR alone can yield a spread of
rates over 1 cm h21 across the ensemble, which in turn can
change the amount of time a decision threshold is reached. Any
ability to narrow the range of SLRs possible for a particular
event would reduce uncertainty in decision-support tools.

This study represents an initial look at this problem. Future
studies are needed to determine the applicability of these
results to ensembles beyond the HRRRE, and to ensure the
results presented here are generalizable over a larger seasonal
dataset. Likewise, the selection of SLRs could be expanded
beyond those examined here to determine if there are certain
meteorological regimes not well-handled by the SLRs in this
study.

This study raises some additional questions about the role
of SLR algorithms. The first of these being whether substan-
tial value can be had from input-intensive SLR relationships,
or if the uncertainty in the underlying fields is too great, even
at relatively short forecast times. Indeed, it is not obvious
from these results that one should always expect a great

improvement in forecasts from running the input-intensive Cobb
algorithm over just using 10:1, or even the Kuchera algorithm,
which only has one input. However, as suggested above, if con-
straining the expense of the NWP-based algorithms to regions
where they perform well is possible, they can be used to improve
the SLR forecast. Additionally, the interaction in spatial variabil-
ity of SLR estimates and QPF features across the ensemble
should be examined, particularly in the context of mesoscale
structures of interest (e.g., frontogenetical bands).

Another area of future investigation with SLR algorithms
is whether they can represent another axis of uncertainty in
ensemble design. If each member/SLR combination is consid-
ered to be a separate forecast, does this effectively increase
ensemble size, and thus the ability to represent snowfall prob-
abilities better? An ensemble approach to SLR ratios would
allow SLRs that do not work well for a given event to be out-
liers, enabling the forecaster to eliminate those from consider-
ation if the solution does not seem realistic.

Finally, this study focused on four SLRs, but more exist;
how these other SLR relationships would fit in this framework
would also be a useful follow-on study. As NWP microphysi-
cal packages continue to advance and better represent the
particle size distribution, it is possible that information from
these, up to and potentially including an explicitly modeled
SLR, may be useful. It may also be worthwhile to revisit artifi-
cial intelligence as a solution (e.g., Roebber et al. 2003; Ware
et al. 2006) as either a new approach to SLR or as a way of
choosing SLR relationships.
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